翻訳と辞書
Words near each other
・ Weighted average cost of carbon
・ Weighted average return on assets
・ Weighted capitation formula
・ Weighted clothing
・ Weighted constraint satisfaction problem
・ Weighted context-free grammar
・ Weighted correlation network analysis
・ Weighted fair queueing
・ Weighted geometric mean
・ Weighted Majority Algorithm
・ Weighted matroid
・ Weighted median
・ Weighted Micro Function Points
・ Weighted network
・ Weighted product model
Weighted projective space
・ Weighted random early detection
・ Weighted round robin
・ Weighted silk
・ Weighted space
・ Weighted statistics
・ Weighted sterling
・ Weighted sum model
・ Weighted Voronoi diagram
・ Weighted voting
・ Weighted-average life
・ Weighted-average loan age
・ Weighted-knuckle glove
・ Weighting
・ Weighting curve


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Weighted projective space : ウィキペディア英語版
Weighted projective space
In algebraic geometry, a weighted projective space P(''a''0,...,''a''''n'') is the projective variety Proj(''k''()) associated to the graded ring ''k''() where the variable ''x''''k'' has degree ''a''''k''.
==Properties==

*If ''d'' is a positive integer then P(''a''0,''a''1,...,''a''''n'') is isomorphic to P(''a''0,''da''1,...,''da''''n'') (with no factor of ''d'' in front of ''a''0), so one can without loss of generality assume that any set of ''n'' variables ''a'' have no common factor greater than 1. In this case the weighted projective space is called well-formed.
*The only singularities of weighted projective space are cyclic quotient singularities.
*A weighted projective space is a Fano variety and a toric variety.
*The weighted projective space P(''a''0,''a''1,...,''a''''n'') is isomorphic to the quotient of projective space by the group that is the product of the groups of roots of unity of orders ''a''0,''a''1,...,''a''''n'' acting diagonally.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Weighted projective space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.